Objectives

- Define ventilation
- Identify the principles of ventilation
- Identify the considerations for proper ventilation
- Identify the safety precautions to be taken while ventilating a structure
- Identify the procedure of ventilation
- Identify the advantages and disadvantages of different types of ventilation
Objectives

• Identify the considerations of ventilating roofs of different types
• Identify the signs of potential backdraft
• Identify the types of tools used during ventilation
• Identify the techniques for cleaning and maintaining ventilation equipment
• Identify the factors used to determine roof integrity
Objectives

- Identify the techniques for removing existing roof openings
- Identify the technique for opening windows from the inside and outside with or without tools
- Identify the techniques for breaking window or door glass
- Define the stack effect
- Identify the manual and automatic ventilation devices found within structures
- Identify the techniques for ventilating a lower grade
Define Ventilation

- Ventilation - The process of removing smoke, heat and toxic gases from a building and replacing them with air
Identify the Principles of Ventilation

• To systematically remove and replace the heated air, smoke and gases from a structure with cooler air to:

 – Allow entry by firefighters
 – Improve life safety for rescue
 – Improve visibility
 – Locate trapped occupants faster
 – Fresh air to occupants
 – Advance hose lines more rapidly and safely
 – Reduce backdraft and flashover
 – Limit fire spread
 – Reduce property loss
Identify the Considerations for Proper Ventilation

- Life safety hazards
- Visible smoke conditions
- Type of building involved
- High rise buildings
- Basement and windowless buildings
- Location and extent of the fire
- Selecting a place to ventilate
Identify the Safety Precautions to be Taken While Ventilating a Structure

• Wear full PPE including SCBA
• Evaluate the working area(roof) for safety
 – Melting asphalt
 – Spongy roof
 – Smoke coming from the roof
 – Fire coming from the roof
 – Note the existence of obstructions or excessive weight
• Provide a second means of escape
• Exercise caution in working around electric wires or guy wires
Identify the Safety Precautions to be Taken While Ventilating a Structure

• Work in groups of two, with no more people than absolutely necessary
 – Guard the openings
 – Keep personnel a safe distance from axes and saws
 – Remove personnel as soon as ventilation is complete
• Utilize ladders and other precautions to protect personnel
 – Use lifelines, roof ladders or other means to protect personnel from sliding and falling off the roof
 – When using a roof ladder, make sure it is firmly secured to the peak of the roof before using it
 – Extend ladders at least five rungs above the roof line
Identify the Safety Precautions to be Taken While Ventilating a Structure

• Have a charged hoseline in place
 – Cooling vented gases
 – Extinguishing ash and debris
 – **NEVER** direct stream into vent hole

• Use saws and equipment properly
 – Start power tools on the ground to ensure operation
 – Shut power tools off before carrying them up a ladder
Identify the Safety Precautions to be Taken While Ventilating a Structure

• Always work with the wind to your back or side

• When breaking glass, keep hand above the point of contact

• Watch for possibility of fire spread
 – Observe the wind direction in relation to exposures
 – Watch for fire extension
Identify the Procedure of Ventilation

• Two types of ventilation
 – Horizontal
 • Utilizes horizontal openings in a structure such as doors and windows
 – Vertical
 • Involves openings in the roofs or floors
 • Locate at highest point and over seat of fire
 • One big hole is better than several small ones
 • Minimum size 4' x 4'

• Two methods of ventilation
 – Natural
 • Depends on convection currents, wind, and other natural air movement
 – Mechanical
 • Uses mechanical means to augment natural ventilation
Identify the Procedure of Ventilation

• Mechanical
 – Negative pressure
 • Draw fire gases from the structure
 – Positive pressure
 • Force fire gases from the structure
Identify the Procedure of Ventilation

• Mechanical
 – Negative pressure
 • Creates negative pressure inside to suck out smoke and gases
 • Place ejector at exhaust point
 • Watch for churning action at the exhaust opening
Identify the Procedure of Ventilation

• Mechanical
 – Negative pressure
 • Ways to prevent the churning effect
Identify the Procedure of Ventilation

• Mechanical – Positive Pressure Procedure
 • Blowers positioned so the cone of air covers majority of the entrance opening.
 • Accomplished by varying the distance from the entrance opening
Identify the Procedure of Ventilation

• Mechanical - Positive Pressure Procedure
 – Most efficient when the exhaust opening is 75% to 150% of the entrance opening.

Entrance Exhaust Opening =
Identify the Procedure of Ventilation

• Mechanical –Positive Pressure Procedure
 – It is imperative that the flow or path of pressurized air between the entrance opening and the exhaust opening be **controlled and directed** to achieve effective ventilation
Identify the Procedure of Ventilation

- Mechanical – Positive Pressure Procedure
Identify the Procedure of Ventilation

• Mechanical – Positive Pressure Procedure
 – Break the structure down into smaller parts
 – Allows the maximum amount of pressurized air to ventilate each area
Identify the Procedure of Ventilation

• Mechanical
 – Hydraulic
 • Direct a fog stream out the opening to draw gases out of structure
 • Fog stream “cone” should just touch the edges of the opening
Identify the Advantages and Disadvantages of Different Types of Ventilation

• Natural – Horizontal
 – Advantages
 • Uses existing openings
 • Uses natural air currents
 – Disadvantages
 • Depends on natural air currents
 • Routing may expose other parts of the building
 • Same routes used for ventilation may also be used by occupants trying to escape
 • Danger of released gases igniting higher portions of the building
Identify the Advantages and Disadvantages of Different Types of Ventilation

• Mechanical – Vertical
 – Advantages
 • Prevents a backdraft
 • Usually assists in confining the fire
 – Disadvantages
 • Requires firefighters to work above the ground
 • Possibility of roof failure
 • Requires close communication
Identify the Advantages and Disadvantages of Different Types of Ventilation

• Mechanical – Trench or Strip
 – Advantages
 • Aids in stopping the horizontal spread of fire
 – Disadvantages
 • Must be cut well ahead of the advancing fire
 • Must be a minimum of four foot wide which requires lots of time and manpower
Identify the Advantages and Disadvantages of Different Types of Ventilation

• Mechanical – Forced
 – Advantages
 • Ensures a positive control
 • Supplements natural ventilation
 • Facilitates a more rapid rescue under safer conditions
 • Reduces smoke damage
 • Promotes good public relations
 • Can be setup without firefighters having to enter the smoke filled environment
 • Equally effective with vertical or horizontal ventilation
 • Allows more efficient removal of smoke and heat
 • Air exchange is faster than negative pressure ventilation
 • Placement of blower does not interfere with ingress or egress
Identify the Advantages and Disadvantages of Different Types of Ventilation

• Mechanical – Forced
 – Disadvantages
 • Introduction of air can cause the fire to intensify and spread
 • Dependent upon a power source
 • Requires special equipment
Identify the Advantages and Disadvantages of Different Types of Ventilation

- **Hydraulic**
 - **Advantages**
 - May be used in situations in which other types of ventilation are not applicable
 - Takes advantage of the air drawn into the fog stream
 - **Disadvantages**
 - May increase the amount of water damage inside the structure
 - Puts a drain on the available water supply
 - Increases the ice problem during freezing weather
 - Firefighters operating the nozzle must remain in the heated contaminated area
 - Operation may be interrupted when crew goes for fresh SCBA bottles
Identify the Considerations for Ventilating Roofs of Different Types

• Flat Roofs
 – Use existing openings first
 – Look for obstacles and excess weights on roof, such as HVAC systems, skylights, vent pipes, other openings
Identify the Considerations for Ventilating Roofs of Different Types

• Pitched Roofs
 – Work from a roof ladder
 – Look for hot spots or sagging of the roof area PRIOR to walking on surface and CONTINUALLY during ventilation
 – Always sound roof PRIOR to walking on surface and continually during ventilation
 – Look for roof additions or changes, such as overhangs, inverted flat roofs, security measures, parapet walls
 – Look for obstacles and excess weights on roof, such as HVAC systems, skylights, vent pipes, other openings
Identify the Considerations for Ventilating Roofs of Different Types

• Curved / Arched Roofs
 – Be conscious of the danger of sudden and total collapse
 – Roof ladders are useless, recommend aerial devices
 – Be aware of concealed voids, such as cocklofts and attic spaces covered by ceilings
 – Provide two means of escape from the roof, should be remote from each other
Identify the Signs of Potential Backdraft

• **Definition:** The explosive change of superheated gases in an oxygen deficient atmosphere to an inferno with the addition of oxygen

• **Signs**
 – Smoke stained windows
 – Smoke puffing at intervals from building (breathing)
 – Pressurized smoke coming from small cracks
 – Little or no visible flame from the exterior
 – Color of smoke changes

 Black smoke becoming dense gray yellow
Types of Roof Cuts

• Rectangular Cut
 – Requires four cuts completely through the decking
 – Use care to not cut structural supports.
 – Stand upwind and have a safe exit.
 – Can use a triangular cut to help pry up
 – If several layers exist, may have to peel a layer at a time
Types of Roof Cuts

• Louver Cut
 – Used for flat or sloping roofs with plywood decking
 – Power saw or axe used to make the cuts
 – Can quickly create a large opening
Types of Roof Cuts

• Triangular cut
 – Used to prevent metal decking from rolling away as it is cut
 – A saw or axe is used
 – Several may be needed because of their small size
Types of Roof Cuts

• Peak cut
 – Used for peaked roofs with plywood sheeting
 – A tool is used to reveal the roof covering along the peak
 – A power saw or axe is used to make a series of vertical cuts
 – Individual panels are then louvered or removed
Identify the Types of Tools Used During Ventilation

- Chain Saw
- Circular Saw
- Reciprocating Saw
- Metal Cutter
Identify the Techniques for Cleaning and Maintaining Ventilation Equipment

• Visual Inspection
• Wipe down and clean
• Fuel power equipment
• Sharpen blades as needed
• Repair or remove from service damaged equipment
• Sand and apply boiled linseed oil to wood parts
Identify the Factors Used to Determine Roof Integrity

• Sounding
 – Before stepping onto and while moving, strike roof with a heavy tool sledge hammer
 – Listen for a solid sound with little vibration
 – NOT RELIABLE ON TRUSS ROOFS
Identify the Factors Used to Determine Roof Integrity

• Observation of an unsafe roof
 – “Spongy” roof
 – Melting asphalt
 – Smoke coming from roof
 – Fire coming from roof
 – Excess weight (ex. HVAC)
 – Elapsed time of fire

 The longer the fire has been burning, the less the roof integrity
Identify the Techniques for Removing Existing Roof Openings

- Skylights, rooftop stairway, exit doors, ventilators
 - Should be first consideration for ventilation
 - Easier to open / remove then roof
 - Less expensive
 - May have release on inside or outside
 - May be locked
 - Unlock or cut lock
 - May need to be pried / forced
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

• Double hung
 – Two sashes move up and down
 – Common in residences
 – One center lock or one on either side
 – Open or break locking mechanism to force entry
 – Place a prying tool under the lower sash and force it up
 – May be cheaper and easier to break glass then to damage frame
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

- Single hung
 - Upper sash is fixed—only lower sash moves
 - Locking mechanism is the same
 - May be difficult to distinguish from exterior
 - Use same technique as forced entry through double-hung window
 - Breaking glass and opening the window is generally easier
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

- **Awning / Jalousie**
 - Adjustable, overlapping sections of tempered glass
 - Operated by hand crank
 - Difficult to force
 - Avoid if possible
 - Break lower panel and operate crank
 - Break out panels
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

• Horizontal sliding with lock in the center
 – Similar to sliding doors
 – Rods and poles are placed to prevent break-ins
 – Force in the same manner as sliding doors (use pry bar to break latch)
 – Attempt to locate another window if a security rod is present
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

• Casement
 – Steel- or wood-frame windows that crank open
 – Similar to jalousie or awning windows
 – Should be avoid because they are difficult to open
 – To force, break glass, unlock, and open manually
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

• Projected
 – Also called factory windows
 – Avoid forcing entry
 – To force entry, break a pane, unlock, and open the window manually
 – If opening is not large enough, break out entire assembly
Identify the Technique for Opening Windows from the Inside and Outside With or Without Tools

• Barred or screened
 – Break glass through the bars or remove screen
 – Open window and remove the screen
Identify the Techniques for Breaking Window or Door Glass

• Plate
 – Stronger and thicker than ordinary glass
 – Being replaced by tempered glass
 – Easily broken with a sharp object
 – Large sharp pieces
Identify the Techniques for Breaking Window or Door Glass

• Tempered
 – Four times stronger than regular glass
 – Breaks with a sharp object to the corner near the frame
 – Small pieces that are not sharp
Identify the Techniques for Breaking Window or Door Glass

• Plexiglass
 – Stronger than Tempered glass
 – Plastic glass
 – Difficult to break – saw may be tool of choice
 – Very large piece
Define the Stack Effect

- **Winter Stack Effect**
 - Outside temperature is lower than the internal temperature
 - Smoke rises to the upper levels

- **Summer Stack Effect**
 - Outside temperature is higher than the internal temperature
 - Smoke drops to the lower levels
Define the Stack Effect

- High rise buildings
 - Smoke and fire spread
 • Pipe shafts
 • Stairways
 • Elevator shafts
 - Many have hard to break sealed windows.
 - Unique smoke patterns with stack effect.
 - Newer buildings have smoke management in the HVAC.
 - Designate one stairwell as a rescue route.
 - Positive-pressure fans can keep smoke out of the stairs
Identify the Manual and Automatic Ventilation Devices Found Within Structures

• Manual – Existing Roof Openings
 – Scuttle hatches
 – Skylights
 – Monitors
 – Ventilating shafts
 – Stair way doors
Identify the Manual and Automatic Ventilation Devices Found Within Structures

- Automatic
 - HVAC systems
 - Fusible link
Identify Techniques for Ventilating a Lower Grade

- Basement / Cellar
- Crawl Space
- Below grade void

- Create as many openings on one side of the structure as possible and allow firefighters to enter from the opposite side
- Ventilate through the floor over the fire
- Firefighters must descend the stairs through the venting combustion products
Q & A