Self Contained Breathing Apparatus

Part 1
Objectives

• Identify the development of the SCBA
• Identify the hazardous environments requiring the use of respiratory protection
• Identify the physical requirements of the SCBA user
• Identify the uses and limitations of the SCBA
• Identify the components, functions and safety features of SCBA
Development of the SCBA

- Firemen would dip their long beards in water and use it as a filter
- In 1823 John and Charles Deane patented a smoke helmet that was fed with fresh air
- In 1863 A. Lacour invented a SCBA of sorts, consisting of an airtight bag made of canvas and rubber
- In the 1890s and early 1900s the Vajen-Bader Co. produced a “Smoke Protector” which sealed off the wearer’s head and supplied air from a compressed-air cylinder
Hazardous environments requiring the use of SCBA

- Oxygen deficiency
- Elevated temperatures / super heated air
- Smoke
- Toxic gases
Hazardous environments requiring the use of SCBA

- **Oxygen deficiency**
 - Combustion process consumes oxygen
 - Production of toxic gases displaces oxygen
 - Oxygen is diluted by other gases
 - Physiological effects of reduced oxygen (hypoxia)
 + 21% oxygen in air
 + 19.5% is considered oxygen deficient
 + 17% will cause muscular impairment and an increase in respiratory rate
 + 12% will cause dizziness, headache and rapid fatigue
 + 9% will cause unconsciousness
 + 6% or less will cause death in minutes
Hazardous environments requiring the use of SCBA

- Elevated temperatures / super heated air
 - Heated air can damage respiratory tract
 - Excessive heat (120°-130° F)
 - Blood pressure drop
 - Circulatory failure
 - Inhalation of heated gases
 - Pulmonary edema
 - Death from asphyxiation
 - Respiratory tissue injury is not immediately reversible with the introduction of fresh, cool air
Hazardous environments requiring the use of SCBA

• Smoke
 – Product of incomplete combustion
 – Suspended particles provide a means for the condensation of some of the gaseous products of combustion
 – Some particles are only irritating while others are lethal
 – The size of the particle will determine how deeply it penetrates into the lungs
Hazardous environments requiring the use of SCBA

- Toxic gases
 - Every fire will present differing products of combustion
 - Combinations of gases may have a synergistic effect
 - May cause disease of the lung tissue
 - Impair the oxygen carrying capacity of red blood cells
 - Commonly found fire gases
 - Carbon monoxide
 - Hydrogen chloride
 - Hydrogen cyanide
 - Carbon dioxide
 - Nitrogen oxides
 - Phosgene
Hazardous environments requiring the use of SCBA

- Toxic gases
 - Every fire will present differing products of combustion
 - Combinations of gases may have a synergistic effect
 - May cause disease of the lung tissue
 - Impair the oxygen carrying capacity of red blood cells
 - Commonly found fire gases
 - Carbon monoxide
 - Hydrogen chloride
 - Hydrogen cyanide
 - Carbon dioxide
 - Nitrogen oxides
 - Phosgene
Hazardous environments requiring the use of SCBA

- Carbon monoxide
 - More fire deaths than any other product of combustion
 - Colorless
 - Odorless
 - Present at every fire
 - Results from incomplete combustion
 - Combines with hemoglobin about 200 times faster than oxygen causing oxygen to be excluded
 - Concentrations above five hundredths of one percent (0.05%) or 500 PPM can be dangerous
Hazardous environments requiring the use of SCBA

• Carbon monoxide
 – Symptoms include
 • Headache
 • Dizziness
 • Nausea
 • Vomiting
 • Cherry-red skin coloration
 – Administering pure oxygen is most important for first aid
 – Brain injuries may appear up to three weeks after severe exposure
Hazardous environments requiring the use of SCBA

- Hydrogen chloride
 - Colorless
 - Pungent odor
 - Causes swelling of upper respiratory tract
 - Labored breathing
 - Suffocation can result
 - Due to the increased use of plastics, polyvinyl chloride (PVC)
 - Overhaul stage is especially dangerous
 - Latent heat can still decompose plastics
 - Electrical cables may continue to decompose after the fire is extinguished
Hazardous environments requiring the use of SCBA

- Hydrogen cyanide
 - Colorless
 - Almond odor
 - Interferes with respiration at the cellular and tissue level
 - Classified as a chemical asphyxiate
 - Concentrations above 50 PPM are almost immediately fatal
 - Materials that emit hydrogen cyanide
 - Wool
 - Nylon
 - Polyurethane foam
 - Rubber
 - Paper
Hazardous environments requiring the use of SCBA

- Carbon dioxide
 - Colorless
 - Odorless
 - Non-flammable
 - Concentrations greater than 10-12% cause death within a few minutes from paralysis of the brain’s respiratory center
 - Use caution when working around a carbon dioxide total flooding system
Hazardous environments requiring the use of SCBA

- Nitrogen oxides
 - Two dangerous types
 - Nitrogen dioxide
 - Reddish brown in color
 - Commonly called silo gas
 - Released from pyroxylin plastics
 - Nitric oxide
 - Rapidly oxidized in air to form nitrogen dioxide
 - Causes pulmonary edema
 - Reacts with water and oxygen to form nitric and nitrous acids
 - Causes arterial dilation, variation in blood pressure, dizziness and headaches
 - Irritating effects can be tolerated while a lethal dose is being inhaled
Hazardous environments requiring the use of SCBA

- Phosgene
 - Colorless
 - Tasteless
 - Disagreeable odor
 - Produced when freon comes into contact with flame
 - When in contact with water, it decomposes into hydrochloric acid
 - Concentrations above 25 PPM are hazardous
Requirements of the SCBA User

• Sound physical condition
 – Maximize amount of work that can be performed
 – Maximize available air supply

• Agility
 – Unit will restrict wearer’s movements
 – Will affect balance

• Facial features
 – Need a good facepiece seal
 – Facial hair may not permit a proper facepiece seal
Requirements of the SCBA User

• Medical
 – Good motor coordination needed
 – Must have good physical strength and size
 – Good cardiovascular system
 – Healthy respiratory system

• Mental
 – Adequate training in use of equipment
 – Self-confidence
 – Emotional stability
Uses and Limitations of SCBA

- Limited visibility
- Decreased ability to communicate
- Increased weight
- Decreased mobility
- Limited air supply
Uses and Limitations of SCBA

• Conservation of air
 – Always practice controlled breathing
 – When supply is low, you may practice skip breathing
 • Emergency breathing technique
 • Inform partner of low air and exit toxic atmosphere
 • Inhale, hold your breath as long as it would take to exhale, then inhale once again before exhaling
 • Exhale slowly to keep carbon dioxide in the lungs in the proper balance
Components, Functions and Safety Features of SCBA

• Open circuit SCBA
 – Air cylinder assembly
 • Main weight of the breathing apparatus
 • Many different cylinder pressures and capacities

• Low pressure 2216 PSI
 – Contains 45 cubic feet of air
 – Rated as a 30 minute supply
 – Expected use of time 12 to 18 minutes

• Low pressure 3000 PSI
 – Contains 66 cubic feet of air
 – Rated as a 45 minute supply

• High pressure 4500 PSI
 – Contains 45 cubic feet of air
 – Rated as a 30 minute supply

• High pressure 4500 PSI
 – Contains 87 to 90 cubic feet of air
 – Rated as a 60 minute supply
Components, Functions and Safety Features of SCBA

• Open circuit SCBA
 – Backpack and harness assembly
 • Designed to hold the air cylinder
 • Harness straps provide a secure fit
 • Waist strap is designed to distribute weight of cylinder
 – Regulator
 • Reduces the pressure to slightly above atmospheric pressure and controls the flow to meet needs of wearer
 • By-pass or purge valve is used as an emergency valve should regulator fail
 • Pressure gauge located in close proximity to face piece
 – Should read within 100 PSI of cylinder gauge
 • Audible low pressure / quarter service alarm
Components, Functions and Safety
Features of SCBA

- **Open circuit SCBA**
 - Face piece assembly
 - Lens
 - Exhalation valve / one way valve
 - Possibly a low pressure hose
 - Adjustable straps or webbing
 - Speaking diaphragm
Components, Functions and Safety Features of SCBA

• Closed-circuit breathing apparatus
 – Not commonly used in the fire service
 – Sometimes used for hazmat or confined spaces
 – Air supply of 30 minutes to 4 hours
 – Contains a cylinder of oxygen, filter system and regulator valves
 – Filters and cleans exhaled breath and adds pure oxygen
Q & A